Free Energy of the fcc and hcp Lattices under First- and Second-Neighbor Harmonic Interactions*

Zevi W. Salsburg
Department of Chemistry, Rice University, Houston, Texas 77001

AND

Dale A. Huckaby

Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129
Received September 8, 1970

The harmonic contribution to the high-temperature expansion of the Helmholtz free energy was calculated for the hcp and fcc lattices for an arbitrary analytic central pair potential with interactions extending tofirstandsecondneighbors. The numerical method used was not the usual extrapolation based upon a sampling of points in the first Brillouin zone but rather an extrapolation of the properties of finite crystals to the thermodynamic limit $(N \rightarrow \infty)$.

1. Introduction

The face centered cubic structure was the only known crystalline form of argon until 1964. In that year, using a powder x-ray diffraction technique, Barrett and Meyer [1] observed a metastable hexagonal close packed phase in coexistence with the fcc phase. It was found that a 1% impurity was sufficient to stabilize the hcp phase [2].

Optical bi-refringence [3] and electron diffraction [4] studies on very pure argon samples indicated the hcp phase does indeed coexist with the fcc phase below the triple point. Recent electron diffraction studies on very thin films of solid argon found that an fcc, an hcp, a mixture of fcc-hcp, or an amorphous phase could exist depending on the film thickness and condensation conditions [5].

Due to the great similarity of the fcc and hcp packings, quite precise theoretical work is necessary to obtain quantitative differences in the thermodynamic

[^0]properties of the two lattices, but the relatively short range van der Waals interactions in solid argon should render the system relatively amenable to precise theoretical investigations. Several informative reviews of this problem have appeared in recent years [6-9].

Lattice energy calculations for Lennard-Jones and related potentials favor the hcp lattice for stability [10-11]. Even though the zero-point vibrational energy under first neighbor interactions favors the fcc lattice for stability, its effect is insufficient to counterbalance the lattice energy difference [12]. The effects of anharmonic interactions have been explored, especially for the fcc lattice under first neighbor interactions [13-16]. Many body interactions have also been considered in an attempt to explain the relative stability, but their effects have been quite small [17-19].
In order to perform meaningful calculations, an accurate interaction potential must be known. Alder and Paulson [20] have pointed out that small changes in the interaction potential can result in either the fcc or hcp lattice having the lower lattice energy. Barron [21] has discussed intermolecular potentials with regard to anharmonic crystals, and a many body interaction potential has been proposed by Klein and Munn [22]. Dymond and Alder [23] have recently calculated a numerical pair potential for Ar which fits known data quite well. Experimental work on the Ar_{2} molecule [24] may soon aid in the elucidation of the interaction potential.

Thus, despite the relative theoretical simplicity which one assumes for rare gas crystals, we are in fact confronted with a complex problem. Each consideration or contribution can be extremely crucial. A survey of the literature [9] shows, however, that even the harmonic model has not been analyzed carefully enough to say what the harmonic contributions are to the relative stability of the fcc and hcp phases.

It is the purpose of the present work to calculate the harmonic contribution to to the Helmholtz frec energy for the fcc and hap lattices. The calculations werc performed for an arbitrary central, pairwise-additive, analytic potential since an accurate interaction potential for argon has not been well characterized. Moreover, since the differences in the two lattices are quite small, the effect of both first- and second-neighbor interactions were considered.

Most studies of the harmonic model focus attention on the phonon frequency distribution function $g(\nu)$. The numerical extrapolation method most often employed consists of solving the secular equation at a relatively small number of mesh points in the irreducible section of the first Brillouin zone and then by interpolation or extrapolation estimating the solutions over the entire Brillouin zone. Details of these techniques can be found in many references [25].

An alternative technique, seldom used, is to calculate the properties of a finite crystal of N particles exactly for various values of N and then extrapolate to $N=\infty$.

This technique can make use of the analysis of asymptotic N dependence to help the extrapolation [26] and was chosen as the procedure for this investigation.

2. Harmonic Analysis

Consider a three dimensional lattice with Born-Von Karman boundary conditions which contains N interacting particles. Let $\mathbf{R}_{i}{ }^{0}$ be the vector from the origin of a Cartesian coordinate system to lattice site i. Figure 1 illustrates the situation in which particles i and j are displaced from their lattice sites by amounts \mathbf{r}_{i} and \mathbf{r}_{j}, respectively.

Fig. 1. Situation in which particles i and j are displaced from their lattice sites by amounts \mathbf{r}_{i} and \mathbf{r}_{j}, respectively. The dots indicate the instantaneous positions of the two particles.

Assuming central forces and pairwise interactions, we may define a potential

$$
\begin{equation*}
U_{N}=\sum_{(i j)} \Phi\left(R_{i j}\right) . \tag{2.1}
\end{equation*}
$$

Although triplet and higher-order interactions are neglected here, their effects have been the subject of recent investigations [17-19].
We obtain in the harmonic approximation [27]

$$
\begin{equation*}
U_{N}=U_{N}^{(0)}+\frac{1}{2} k_{1} \mathbf{r} \cdot M \cdot \mathbf{r}, \tag{2.2}
\end{equation*}
$$

where $\mathbf{r}=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right), \mathrm{M}$ is a dynamical matrix with eigenvalues $\left(\nu_{\alpha} / \nu_{0}\right)^{2}, \nu_{\alpha}$
$1 \leqslant \alpha \leqslant 3 N-3$ are the $3 N-3$ normal vibrational modes for the system,

$$
\nu_{0}=\frac{1}{2 \pi} \sqrt{k_{1} / m}, \quad k_{1}=\Phi^{\prime \prime}\left(R_{0}\right)-\Phi^{\prime}\left(R_{0}\right) / R_{0},
$$

R_{0} being the first-neighbor equilibrium separation.
The anharmonic terms which are neglected in Eq. (2.2) account for several interesting phenomena [13-16].

The Helmholtz free energy for the system is given as

$$
\begin{equation*}
A_{N}=U_{N}^{(0)}+F_{N}, \tag{2.3}
\end{equation*}
$$

where $U_{N}^{(0)}$ is the lattice energy at absolute zero and F_{N} is the harmonic free energy. At sufficiently high temperatures [28, 29]

$$
\begin{equation*}
F_{N} / N k T=(3-3 / N) \ln (\Theta / T)+\frac{1}{2 N} \ln |M|^{\prime}+\sum_{n=1}^{\infty} \frac{B_{2 n}}{(2 n)(2 n)!}(\Theta / T)^{2 n} \frac{1}{N} \operatorname{tr}\left(\mathrm{M}^{n}\right), \tag{2.4}
\end{equation*}
$$

where $\Theta=h \nu_{0} / k$ and $|M|^{\prime}$ is restricted to exclude the three translational modes.
To facilitate the numerical calculation of the terms in Eq. (2.4), the matrix M can be block diagonalized by standard techniques [30, 31].

3. Numerical Results

Under first- and second-neighbor interactions, the matrix elements of M depend linearly on three-dimensionless parameters

$$
\begin{align*}
l_{1} & =\Phi^{\prime}\left(R_{0}\right) /\left(k_{1} R_{\mathrm{n}}\right), \\
l_{2} & =\Phi^{\prime}\left(\sqrt{2} R_{0}\right) /\left(k_{1} \sqrt{2} R_{0}\right), \tag{3.1}\\
k_{2} & =\Phi^{\prime \prime}\left(\sqrt{2} R_{0}\right) / k_{1}-l_{2}
\end{align*}
$$

As such,

$$
\begin{equation*}
\frac{1}{N} \operatorname{tr} \mathrm{M}^{n}=\sum_{c_{1}, C_{2}, C_{3}=0}^{n} b_{C_{1} C_{2} c_{3}}^{(n)} l_{1}^{c_{1}} l_{2}^{c_{2}} k_{2}^{C_{3}}, \quad C=C_{1}+C_{2}+C_{3} \leqslant n . \tag{3.2}
\end{equation*}
$$

As shown by Isenberg [32], the coefficients $b_{C_{1} c_{2} c_{3}}^{(n)}$ for sufficiently large finite lattices are exactly the same as for the infinite lattice. A consideration of the form of the dynamical matrix M insures for the fcc lattice that $b_{C_{1} C_{2} c_{3}}^{(n)} 2^{n+C}$ is an integer and insures for the hcp lattice that $b_{C_{1} C_{2} C_{3}}^{(n)} 18^{n-C}$ is an integer.

TABLE 1
Twenty moments for the fcc lattice under first neighbor interactions. The results can be compared to those of Isenberg [32] by noting that $b_{\text {oo } 0}^{(n)}=3 \cdot 8^{n} \mu_{2 n}$.

n	$b_{000}^{(n)}$
0	3.
1	12.
2	60.
3	342.
4	2109.
5	13647.
6	91059.
7	$620273.1 / 4$
8	$4288065.9 / 16$
9	$29977872.3 / 4$
10	$211452231.9 / 16$
11	$1502586690.21 / 32$
12	$10745522619.51 / 128$
13	$77276408636.11 / 128$
14	$558533729674.7 / 8$
15	$4055463913213.43 / 512$
16	$29570777955997.3401 / 4096$
17	$216463329635910.951 / 1024$
18	$1590348447544759.193 / 2048$
19	$11724314853646673.1231 / 4096$

Using this result, the first twenty moments for the fcc lattice under first-neighbor interactions were computed exactly from the numerical results of Isenberg [32]. These moments are listed in Table I and were utilized by Gordon and Wheeler [33] to obtain rigorous upper and lower bounds to some thermodynamic quantities.

The exact values of coefficients $h_{c_{1} c_{2} c_{3}}^{(n)}$ were calculated for both the fce and hep lattices and are given in Table II for $n \leqslant 6$. Garland and Jura [34] have calculated these coefficients for the fcc lattice for the special case $l_{1}=l_{2}=0$. For $n \leqslant 3$, the coefficients are identical for the two lattices as shown by Barron and Domb [35].

In a similar manner we obtain the expansion

$$
\begin{equation*}
\frac{1}{N} \ln |M|^{\prime}=\sum_{c_{1}, c_{2}, C_{3}=0} a_{C_{1} C_{2} C_{3}} C_{1}^{C_{1}} l_{2}^{C_{2}} k_{2}^{C_{3}} . \tag{3.3}
\end{equation*}
$$

Unlike the coefficients $b_{C_{1} c_{2} c_{3}}^{(n)}$ of Eq. (3.2), the coefficients $a_{C_{1} c_{2} c_{3}}^{(n)}$ for the infinite lattice must be obtained by extrapolation. These coefficients for $C \leqslant 3$ were computed for systems of 1000,8000 , and 27000 particles. The extrapolated coefficients are given in Table III. The coefficient a_{000} has been computed by several techniques [26, 33, 36], and all the values obtained agree with our results.

TABLE 2
The exact coefficients $b_{c_{1} c_{2} c_{3}}^{(n)}, 1 \leqslant n \leqslant 6$, of Eq. (3.2) for the fcc and hcp lattices of infinite size. A dash indicates the coefficient for the hcp lattice is equal to the coefficient for the fcc lattice. For $n \leqslant 3$, the coefficients are the same for the two lattices

$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{3}$	$\begin{aligned} & \mathrm{b}(\mathrm{hcp}) \\ & \mathrm{b}(\mathrm{fcc}) \end{aligned}$	$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{3}$	$\begin{aligned} & \mathrm{b}(\mathrm{hcp}) \\ & \mathrm{b}(\mathrm{fcc}) \end{aligned}$
$\mathrm{n}=1$		$n=3$	
000	12	000	342
001	6	001	360
010	36	002	216
100	18	003	60
$\mathrm{n}=2$		010	2412
		011	1800
000	60	012	648
001	48	020	6336
002	18	021	2736
010	312	030	6336
011	144	100	1080
020	468	101	1008
100	144	102	396
101	84	110	5472
110	432	111	3024
	126	120	8208
200		200	1512
		201	972
		210	4536
		300	972

TABLE 2 (continued)

$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{3}$	b (fcc)	$\mathrm{b}(\mathrm{hcp})$	$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{3}$	b (fcc)	b (hcp)
$\mathrm{n}=4$					
000	2109	2108 1/6	102	6336	---
001	2760	2766 2/3	103	1800	---
002	2148	2134 2/3	110	56016	56101 1/3
003	960	---	111	49824	49781 1/3
004	210	---	112	19008	--
010	18576	$185651 / 3$	120	143424	--
011	18288	18341 1/3	121	75456	---
012	10656	10613 1/3	130	143424	---
013	2880	---	200	15264	15157 1/3
020	66456	$664342 / 3$	201	15552	--
021	46656	$466982 / 3$	202	6300	6278 2/3
022	16272	$162291 / 3$	210	75456	---
030	117360	---	211	46656	--
031	47808	--	220	113184	---
040	88020	---	300	15552	--
10.0	8280	8301 1/3	301	10728	---
101	10224	$101382 / 3$	310	46656	---
			400	8046	---

TABLE 2 (continued)

$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{3}$	b (fcc)	b (hep)	$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{3}$	$b(f c c)$	b (hcp	
$\mathrm{n}=5$						
000	13647	13632 /112	112	388080	386586	2/3
001	21501	$216391 / 6$	113	108000	---	
002	20490	20234 1/6	120	1862640	1867760	
003	11850	11740	121	1584000	1582293	$1 / 3$
004	4200	---	122	589680	588826	2/3
005	756	---	130	3209760	---	
010	144150	143870 5/6	131	1612800	---	
011	176520	178030	140	2407320	---	
012	133920	$1327531 / 3$	200	149040	146906	$2 / 3$
013	58800	$583862 / 3$	201	200160	196533	$1 / 3$
014	12600	---	202	126000	125573	$1 / 3$
020	644580	643380	203	36360	36146	2/3
021	596880	600933 1/3	210	969120	964426	2/3
022	339840	$3369331 / 3$	211	954000	952933	$1 / 3$
023	90000	$895731 / 3$	212	378000	376720	
030	1556280	$15548931 / 3$	220	2419200	---	
031	1033920	1036480	221	1440720	---	
032	351360	$3489062 / 3$	230	2419200	---	
040	2075760	---	300	198720	195520	
041	802440	---	301	214560	---	
050	1245456	---	302	88920	88280	
100	64560	65022 1/2	310	960480	---	
101	100320	98565	311	643680	--m	
102	80220	$790131 / 3$	320	1440720	---	
103	36000 .	-	400	150920	---	
104	7980	\cdots	401	117180	---	
110	542160	$5454662 / 3$	410	482760	---	
111	639360	$6349862 / 3$	500	70308	-	

TABLE 2 (continued)

$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{3}$	$b(f c c)$	b (hip)	$\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{3}$	b (fcc)	b (hcp)
$\mathrm{n}=6$					
0.00	91059	90900 125/144	102	944280	912571 1/3
001	168624	170283 13/18	103	544320	$5344851 / 3$
002	191007	187515.3/4	104	191520	---
003	134544	131811 1/9	105	34776	---
004	61776	61149 1/9	110	5094540	5159623
005	18144	--	111	7570080	7473363 7/9
006	2772	---	112	5946480	5839796 4/9
010	1123749	1119553 7/9	113	2633760	2617621 1/3
011	1657980	1682747 8/9	114	574560	---
012	1541160	1523236	120	21750120	21944568
013	878400	863960 8/9	121	2454,080	24,432560
014	307440	304652 4/9	122	14644800	14529152
015	54432	54432	123	4008960	3998240
020	6023295	$59955312 / 9$	130	50533200	50719248
021	6926040	7033264 2/3	131	41179680	41146912
022	5144940	5088840	132	15007680	14948032
023	2232000	2195768 8/9	140	65871360	---
024	471240	$4682531 / 3$	141	31690080	---
030	18196800	18128960	150	39522816	---
031	15917040	16097968	200	1424385	1395924 13/18
032	8892720	8772976	201	2412360	2314650 8/9
033	2318400	2288768	202	1947600	$18951431 / 3$
040	33299280	33244176	203	872640	867520
041	21029760	21124992	204	195300	193810 2/9
042	6991920	6903856	210	11436480	11331616
050	35743104	---	211	14871600	14613520
051	13174272	---	212	9218880	9156928
060	17871552	---	213	2617920	2602560
100	506682	513152 5/6	220	37728720	37622416
101	961650	937256	221	35916480	35850560

TABLE 2 (continued)

TABLE 3

Listed below are the extrapolated coefficients $a_{C_{1} c_{2} c_{3}}$ of Eq. (3.3). Values for both the fcc and hep lattices are given.

C_{1}	C_{2}	C_{3}	$a(\mathrm{fcc})$	$a(\mathrm{hcp})$
0	0	0	1.8325536	1.8340288
1	0	0	5.3835	5.3705
0	1	0	3.1237	3.0984
0	0	1	1.0395	1.0252
2	0	0	-11.196	-11.099
0	2	0	-5.0010	-4.7810
0	0	2	-0.70722	-0.64973
1	1	0	-13.798	-13.464
1	0	1	-4.7363	-4.5767
0	1	1	-3.4054	-3.1866
3	0	0	34.501	33.827
0	3	0	13.764	12.404
0	0	3	0.84842	0.69747
2	1	0	67.838	64.653
2	0	1	24.260	22.860
1	2	0	51.098	47.203
0	2	1	14.581	12.663
1	0	2	7.4458	6.5988
0	1	2	5.8837	4.9561
1	1	1	36.243	32.613

4. An Example Calculation

Consider the pair potential [10]

$$
\begin{equation*}
\Phi\left(R_{i j}\right)=\epsilon\left(R^{*} / R_{i j}\right)^{12}-2 \epsilon\left(R^{*} / R_{i j}\right)^{6} \tag{4.1}
\end{equation*}
$$

Following Kihara and Koba [11], we shall determine the first-neighbor separation R_{0} by minimizing $U_{N}^{(0)}$ at absolute zero, neglecting the zero-point vibrational energy. This yields

$$
\begin{align*}
U_{N}^{(0)} / N \epsilon & =C_{6}^{2} / 2 C_{12}, \\
V / N R^{* 3} & =\left(C_{12} / 2 C_{6}\right)^{1 / 2}, \\
k_{1} & =12 \epsilon \eta R^{*-2} C_{6}^{4 / 3} C_{12}^{-7 / 3}, \\
k_{2} & =\left(7 C_{6}-32 C_{12}\right) / 2^{6} \eta, \tag{4.2}\\
l_{1} & =\left(-C_{6}+C_{12}\right) / \eta, \\
l_{2} & =\left(-C_{6}+8 C_{12}\right) / 2^{7} \eta,
\end{align*}
$$

where $\eta=14 C_{6}-8 C_{12}$.

From the results of Section 3, we find, where $\Delta=$ hcp-fcc,

$$
\begin{align*}
(k T)^{-1} \Delta\left(F_{N} / N\right)= & 2.62 \times 10^{-3}+4.57 \times 10^{-5}\left(\Theta_{\mathrm{fcc}} / T\right)^{2} \\
& +3.65 \times 10^{-6}\left(\Theta_{\mathrm{fcc}} / T\right)^{4}+4.76 \times 10^{-7}\left(\Theta_{\mathrm{fcc}} / T\right)^{6}+\cdots, \tag{4.3}
\end{align*}
$$

which converges for $T>0.865 \Theta_{\mathrm{fcc}}$. It is interesting to note that ΔF_{N} is essentially a classical result in the region of convergence.

Since $\Delta V<0$, the hcp lattice is stable at higher pressures than is the fcc lattice. For the two lattices to coexist at a fixed temperature and pressure,

$$
\begin{equation*}
\Delta G=0=\Delta A+P \Delta V \tag{4.4}
\end{equation*}
$$

The transition pressure for $T>0.865 \Theta_{\mathrm{fec}}$ is then given as

$$
\begin{equation*}
P=-80.2\left(\epsilon / R^{* 3}\right)+\left[243+4.24\left(\Theta_{\mathrm{fcc}} / T\right)^{2}\right] k T / R^{* 3} \tag{4.5}
\end{equation*}
$$

Using the values $\epsilon=1.69 \times 10^{-14} \mathrm{erg}$ and $R^{*}=3.82 A$ for argon in the fcc structure [6], we find $\Theta_{\mathrm{fcc}}=36.6^{\circ} \mathrm{K}$. Equation (4.5) then predicts the fcc lattice to be the stable form of argon for $T>\Theta_{\mathrm{icc}}$ with a possibility of a phase transition to the hcp structure occurring at pressures of the order of 10^{10} dynes $/ \mathrm{cm}^{2}$.

The errors in the example calculation resulting from the choice of interaction potential and from the determination of the parameters at absolute zero rather than at the temperature in question are no doubt quite large. The main point of the example is to point out that ΔF_{N} depends significantly on second-neighbor harmonic interactions. As such, any attempt to explain the stability of the two lattices should include the effects of second-neighbor harmonic interactions. The results of Section 3 should prove quite useful in this regard.

Acknowledgments

I wish to express my appreciation for the wonderful learning experience I received under the direction of Zevi Salsburg at Rice University. Thanks are due Dr. Adolph Beyerlein, Dr. Lesser Blum, and Dr. John Kilpatrick for many interesting and fruitful discussions. I wish to acknowledge Lucille Huckaby, my wife, for helping in the calculation of Eq. (4.3),

References

1. C. S. Barrett and L. Meyer, J. Chem. Phys. 41 (1964), 1078.
2. C. S. Barrett, L. Meyer, and J. Wasserman, J. Chem. Phys. 44 (1966), 999.
3. I. Lefkowitz, K. Kramer, M. A. Shields and G. L. Pollack, J. Appl. Phys. 38 (1967), 4867.
4. J. A. Venables and D. J. Ball, "Proceedings Sixth International Congress on Electron Microscopy," p. 333, Kyoto, 1966.
5. S. I. Kovalenko and N. N. Bagrov, Sov. Phys. Solid State 9 (1968), 2396.
6. E. R. Dobbs and G. O. Jones, Repts. Progr. Phys. 20 (1957), 516.
7. G. L. Pollack, Rev. Mod. Phys. 36 (1964), 748.
8. G. Воато, Cryogenics 4 (1964), 65.
9. G. K. Horton, Amer. J. Phys. 36 (1968), 93.
10. J. Lennard-Jones and A. Ingam, Proc. Roy. Soc. A107 (1925), 636.
11. T. Kihara and S. Koba, J. Phys. Soc. Japan, 7 (1952), 348.
12. C. Isenberg and C. Domb, in "Lattice Dynamics," p. 141, Pergamon Press, New York, 1964.
13. M. L. Klein, G. K. Horton, and J. L. Feldman, Phys. Rev. 184 (1969), 968.
14. J. L. Feldman and G. K. Horton, Proc. Phys. Soc. 92 (1967), 227.
15. M. L. Klein, V. V. Goldman, and G. K. Horton, J. Phys. Chem. 2 (1969), 1542.
16. T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. 85 (1965), 533.
17. L. Jansen and E. Lombardi, Discussions Faraday Soc. 40 (1965), 78.
18. A. Lucas, Physica 35 (1967), 353.
19. A. Lucas, Phys. Rev. 176 (1968), 1093.
20. B. Alder and R. Paulson, J. Chem. Phys. 43 (1965), 4172.
21. T. H. K. Barron, Discussions Faraday Soc. 40 (1965), 69.
22. M. L. Klein and R. J. Munn, J. Chem. Phys. 47 (1967), 1035.
23. J. H. Dymond and B. J. Alder, J. Chem. Phys. 51 (1969), 309.
24. Y. Tanaka and K. Yoshino, J. Chem. Phys. 53 (1970), 2012.
25. A convenient source of references is R. F. Wallis, Lattice dynamics, in "Proceedings of the International Conference held at Copenhagen, Denmark, August 5-9, 1963," Pergamon Press, New York, 1965. A more recent application to fcc and hcp structures can be found in L. J. Raubenheimer and G. Gllat, Phys. Rev. 157 (1967), 586.
26. G. Hoover, J. Chem. Phys. 49 (1968), 1981.
27. see, e.g., M. Bradburn and M. Born, Proc. Cambridge Phil. Soc. 39 (1943), 113.
28. O. Stern, Ann. Phys. 51 (1916), 237.
29. E. Muntrull, J. Chem. Phys. 10 (1942), 218.
30. B. Friedman, Proc. Cambridge Phil. Soc. 57 (1961), 37.
31. M. Born and K. Huang, "Dynamical Theory of Crystal Lattices," Oxford Univ. Press, Oxford, 1954.
32. C. Isenberg, Phys. Rev. 132 (1963), 2427.
33. J. Wheeler and R. Gordon, J. Chem. Phys. 51 (1969), 5566.
34. C. Garland and G. Jura, J. Chem. Phys. 22 (1954), 1108.
35. T. Barron and C. Domb, Proc. Roy. Soc. A227 (1955), 447.
36. D. Huckaby and Z. Salsburg, J. Chem. Phys. 53 (1970), 2304.

[^0]: * Support for this research was obtained from an N.D.E.A. fellowship, from Welch Foundation Grant C-055, from N.S.F. Grant GP-6447, and from the T.C.U. Research Foundation. The calculations of Section 3 were carried out on the Rice Computer.

