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Tbe harmonic contribution to the high-temperature expansion of the Helmboltz free 
energy was calculated for the hcp and fee lattices for an arbitrary analytic central pair 
potential with interactions extending tofirstandsecondneighbors. The numerical method 
used was not the usual extrapolation based upon a sampling of points in the first Brillouin 
zone but rather an extrapolation of the properties of finite crystals to the thermodynamic 
limit (N+ co). 

1. INTRODUCTION 

The face centered cubic structure was the only known crystalline form of argon 
until 1964. In that year, using a powder x-ray diffraction technique, Barrett and 
Meyer [I] observed a metastable hexagonal close packed phase in coexistence with 
the fee phase. It was found that a 1 % impurity was sufficient to stabilize the hcp 
phase 121. 

Optical bi-refringence [3] and electron diffraction [4] studies on very pure argon 
samples indicated the hcp phase does indeed coexist with the fee phase below the 
triple point. Recent electron diffraction studies on very thin films of solid argon 
found that an fee, an hcp, a mixture of fee-hcp, or an amorphous phase could 
exist depending on the film thickness and condensation conditions [5]. 

Due to the great similarity of the fee and hcp packings, quite precise theoretical 
work is necessary to obtain quantitative differences in the thermodynamic 

* Support for this research was obtained from an N.D.E.A. fellowship, from Welch Foundation 
Grant C-055, from N.S.F. Grant GP-6447, and from the T.C.U. Research Foundation. The cal- 
culations of Section 3 were carried out on the Rice Computer. 
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properties of the two lattices, but the relatively short range van der Waals inter- 
actions in solid argon should render the system relatively amenable to precise 
theoretical investigations. Several informative reviews of this problem have 
appeared in recent years [6-91. 

Lattice energy calculations for Lennard-Jones and related potentials favor the 
hcp lattice for stability [lo-111. Even though the zero-point vibrational energy 
under first neighbor interactions favors the fee lattice for stability, its effect is 
insufficient to counterbalance the lattice energy difference [12]. The effects of anhar- 
manic interactions have been explored, especially for the fee lattice under first 
neighbor interactions [13-161. Many body interactions have also been considered 
in an attempt to explain the relative stability, but their effects have been quite small 
[17-191. 

In order to perform meaningful calculations, an accurate interaction potential 
must be known. Alder and Paulson [20] have pointed out that small changes in 
the interaction potential can result in either the fee or hcp lattice having the lower 
lattice energy. Barron [21] has discussed intermolecular potentials with regard to 
anharmonic crystals, and a many body interaction potential has been proposed 
by Klein and Munn [22]. Dymond and Alder [23] have recently calculated a 
numerical pair potential for Ar which fits known data quite well. Experimental 
work on the Ar, molecule [24] may soon aid in the elucidation of the interaction 
potential. 

Thus, despite the relative theoretical simplicity which one assumes for rare gas 
crystals, we are in fact confronted with a complex problem. Each consideration or 
contribution can be extremely crucial. A survey of the literature [9] shows, however, 
that even the harmonic model has not been analyzed carefully enough to say what 
the harmonic contributions are to the relative stability of the fee and hcp 
phases. 

It is the purpose of the present work to calculate the harmonic contribution to 
to the Helmholtz free energy for the fee and hcp lattices. The calculations were 
performed for an arbitrary central, pairwise-additive, analytic potential since an 
accurate interaction potential for argon has not been well characterized. Moreover, 
since the differences in the two lattices are quite small, the effect of both first- and 
second-neighbor interactions were considered. 

Most studies of the harmonic model focus attention on the phonon frequency 
distribution function g(v). The numerical extrapolation method most often 
employed consists of solving the secular equation at a relatively small number of 
mesh points in the irreducible section of the first Brillouin zone and then by 
interpolation or extrapolation estimating the solutions over the entire Brillouin 
zone. Details of these techniques can be found in many references [25]. 

An alternative technique, seldom used, is to calculate the properties of a finite 
crystal of N particles exactly for various values of N and then extrapolate to N = co. 
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This technique can make use of the analysis of asymptotic N dependence 
to help the extrapolation [26] and was chosen as the procedure for this investigation. 

2. HARMONIC ANALYSIS 

Consider a three dimensional lattice with Born-Von Karman boundary con- 
ditions which contains N interacting particles. Let Rio be the vector from the origin 
of a Cartesian coordinate system to lattice site i. Figure 1 illustrates the situation 
in which particles i and j are displaced from their lattice sites by amounts ri and rj , 
respectively. 

FIG. 1. Situation in which particles i and j are displaced from their lattice sites by amounts 
ri and rj , respectively. The dots indicate the instantaneous positions of the two particles. 

Assuming central forces and pairwise interactions, we may define a potential 

UN = 1 @(Rii). (2.1) 
(ij) 

Although triplet and higher-order interactions are neglected here, their effects have 
been the subject of recent investigations [17-191. 

We obtain in the harmonic approximation [27] 

17, = U$” + ‘k r - M - r 21 7 (2.2) 

where r = (rl ,..., rN), M is a dynamical matrix with eigenvalues (Y&~)~, v, 
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1 < 01 < 3N - 3 are the 3N - 3 normal vibrational modes for the system, 

v,=+k,lnz, k, = @“(R,) - @‘(RJR, , 

R, being the first-neighbor equilibrium separation. 
The anharmonic terms which are neglected in Eq. (2.2) account for several 

interesting phenomena [13-161. 
The Helmholtz free energy for the system is given as 

A,= U$‘+F,, (2.3) 

where U{’ is the lattice energy at absolute zero and FN is the harmonic free energy. 
At sufficiently high temperatures [28,29] 

FdNkT = (3 - 3/N) ln(@/T) + & ln I M I’ + fl (2n;&, , (@/T)2n $ tr(M”), 

(2.4) 

where 0 = hv,,/k and 1 M I’ is restricted to exclude the three translational modes. 
To facilitate the numerical calculation of the terms in Eq. (2.4), the matrix M 

can be block diagonalized by standard techniques [30, 311. 

3. NUMERICAL RESULTS 

Under first- and second-neighbor interactions, the matrix elements of M 
depend linearly on three-dimensionless parameters 

4 = @‘UW(k&)~ 

I, = @‘(v’?R,)/(k, v’%), 

k, = @“(d\/2R,,)/kl - I2 . 

(3.1) 

As such, 

$trM”= $, =. b~)C&$+@~ C = Cl + C, + C, < II. (3.2) c 
1, 21 3 

As shown by Isenberg [32], the coefficients bzC,C, for sufficiently large finite 
lattices are exactly the same as for the infinite lattice. A consideration of the form 
of the dynamical matrix M insures for the fee lattice that bcca-, 2”+c is an integer 
and insures for the hcp lattice that bF1)02CS18n-C is an integer. 
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TABLE 1 

Twenty moments for the fee lattice under tirst neighbor interactions. The 
results can be compared to those of Isenberg [32] by noting that bA!i = 3.8”~~~. 

0 3. 
1 12. 
2 60. 
3 342. 
4 2109. 
5 13647. 
6 91059. 
7 620273.1/4 
8 4288065.9/16 
9 29977872.314 

10 211452231.9/16 
11 1502586690.21/32 
12 10745522619.51/128 
13 77276408636.11/128 
14 558533729674.718 
15 4055463913213.43/512 
16 29570777955997.3401/4096 
17 216463329635910.951/1024 
18 1590348447544759.19312048 
19 11724314853646673.1231/4096 

Using this result, the first twenty moments for the fee lattice under first-neighbor 
interactions were computed exactly from the numerical results of Isenberg [32]. 
These moments are listed in Table I and were utilized by Gordon and Wheeler [33] 
to obtain rigorous upper and lower bounds to some thermodynamic quantities. 

The exact values of coefficients bcczc, were calculated for both the fee and hcp 
lattices and are given in Table II for n < 6. Garland and Jura [34] have calculated 
these coefficients for the fee lattice for the special case I, = I, = 0. For 12 < 3, 
the coefficients are identical for the two lattices as shown by Barron and Domb [35]. 

In a similar manner we obtain the expansion 

+lnlMi’= 1 aCIC,C,l~l~k~. (3.3) 
c,,c,,c,=o 

Unlike the coefficients bf$c,c8 of Eq. (3.2), the coefficients a;&, for the infinite 
lattice must be obtained by extrapolation. These coefficients for C < 3 were 
computed for systems of 1000, 8000, and 27 000 particles. The extrapolated 
coefficients are given in Table III. The coefficient aOOO has been computed by several 
techniques [26, 33, 361, and all the values obtained agree with our results. 
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TABLE 2 

The exact coefficients bg”:,,,, , 1 < n < 6, of Eq. (3.2) for the fee and hcp lattices of 
infinite size. A dash indicates the coefficient for the hcp lattice is equal to the 

coefficient for the fee lattice. For n < 3, the coefficients are the same for 
the two lattices 

c2c1c3 
b (hcp) 
b(fcc) 

l-l=1 

000 12 

001 6 

010 36 

100 18 

II=2 

000 60 

001 48 

002 18 

010 312 

011 144 

020 468 

100 144 

101 a4 

110 432 

200 126 

E '2'1'3 
b 0-q) 
b(fcc) 

II=3 

000 342 

001 360 

002 216 

003 60 

010 2412 

011 1800 

012 648 

020 6336 

021 2736 

030 6336 

100 1080 

101 1008 

102 396 

110 5472 

111 3024 
120 8208 

200 1512 

201 972 

210 4536 

300 972 
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TABLE 2 (continued) 

c2c1c3 b(fcc) b (hcp) '2'1'3 b(fcc) b (hcp) 

n=4 

000 2109 

001 2760 

002 2148 

003 960 

004 210 

010 18576 

011 18288 

012 10656 

013 2880 

020 66456 

021 46656 

022 16272 

030 117360 

031 47808 

040 88020 

1 0. 0 8280 

101 10224 

2108 l/6 

2766 213 

2134 213 

--- 

--- 

18565 l/3 

18341 l/3 

10613 l/3 

v-s 

66434 213 

46698 213 

16229 113 

--- 

--- 

--- 

8301 l/3 

10138 213 

102 6336 

103 1800 

110 56016 

111 49824 

112 19008 

120 143424 

121 75456 

130 143424 

200 15264 

201 15552 

202 6300 

210 75456 

211 46656 

220 113184 

300 15552 

301 10728 

310 46656 

400 8046 

--- 

--- 

56101 l/3 

49781 l/3 

--- 

--- 

--- 

15157 l/3 

--- 

6278 213 

e-4 

-- 

--- 

-- 

--- 

--- 

--- 
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SALSBURG AND HUCKABY 

TABLE 2 (coniimed) 

CZClC3 b(fcc) b (hcp) 

n=5 

000 13647 
001 21501 
002 20490 
003 11850 
004 4200 
005 756 
010 144150 
011 176520 
012 133920 
013 58800 
014 12600 
020 644580 
021 596880 
022 339840 
023 90000 
030 1556280 

031 1033920 
032 351360 
040 2075760 
041 802440 
050 1245456 
100 64560 

101 100320 
102 80220 
103 36000 
104 7980 
110 542160 
111 639360 

13632 5/12 
21639 116 
20234 l/6 
11740 
--- 
--- 

143870 5/6 
178030 
132753 l/3 
58386 213 
--- 

643380 
600933 l/3 
336933 l/3 
89573 l/3 

1554893 l/3 
1036480 
348906 213 

--- 
--- 
--- 

65022 l/2 
98565 
79013 l/3 
--- 
--- 

545466 213 
634986 213 

'2'1'3 b(fcc) b (hcp) 

112 388080 
113 108000 
120 1862640 

121 1584000 
122 589680 
130 3209760 
131 1612800 
140 2407320 
200 149040 
201 200160 
202 126000 
203 36360 
210 969120 
211 954000 
212 378000 
220 2419200 
221 1440720 
230 2419200 
300 198720 
301 214560 
302 88920 
310 960480 
311 643680 
320 1440720 
400 160920 
401 117180 
410 482760 

500 70308 

386586 213 

--- 

1867760 
1582293 113 
588826 213 

--- 
--- 
--- 

146906 213 
196533 l/3 
125573 l/3 
36146 213 

964426 213 
952933 l/3 
376720 

--- 
--- 
--- 

195520 
--- 

88280 
--- 
--- 
--- 
--- 
--- 
--- 
--- 
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TABLE 2 (continued) 

'2'1'3 b(fcc) b (hcp) 

000 

001 

002 

003 

004 

005 

006 

010 

011 

012 

013 

014 

015 

020 

021 

022 

023 

024 

030 

031 

032 

033 

040 

041 

042 

050 

051 

060 

100 

101 

91059 

168624 

191007 

134544 

61776 

18144 

2772 

1123749 

1657980 

1541160 

878400 

307440 

54432 

6023295 

6926040 

5144940 

2232000 

471240 

18196800 

15917040 

8892720 

2318400 

33299280 

21029760 

6991920 

35743104 

13174272 

17871552 

506682 

90900 125/144 

170283 13/18 

187515 314 

131811 l/9 

61149 l/9 
--- 

--- 

1119553 7/Y 

1682747 8/Y 

1523236 

863960 B/9 

304652 4/Y 

54432 

5995531 2/Y 

7033264 213 

5088840 

2195768 8/Y 

468253 l/3 

18128960 

1609 7968 

8772976 

2288768 

33244176 

21124992 

6903856 
--- 

--- 

--- 

513152 516 

961650 937256 

'2'1'3 b(fcc) b (hcp) 

102 944280 

103 544320 

104 191520 

105 34776 

110 5094540 

111 7570080 

112 5946480 

113 2633760 

114 574560 

120 21750120 

121 24544080 

122 14644800 

123 4008960 

130 50533200 

131 41179680 

132 15007680 

140 65871360 

141 31690080 

150 39522816 

200 1424385 

201 2412360 

202 1947600 

203 872640 

204 195300 

210 11436480 

211 14871600 

212 9218880 

213 2617920 

220 37728720 

221 35916480 

912571 l/3 

534485 l/3 
--- 

--- 

5159623 

7473363 J/Y 

5839796 4/Y 

2617621 l/3 
--- 

21944568 

24432560 

14529152 

3998240 

50719248 

41146912 

14948032 
--- 

--- 

--- 

1395924 13118 

2314650 B/9 

1895143 l/3 

867520 

193810 2/9 

11331616 

14613520 

9156928 

2602560 

37622416 

35850560 
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TABLE 2 (continued) 

c2c1c3 b(fcc) b (hcp) 

n = 6 (continued) 

222 13955760 13898096 
230 63380160 --- 
231 36383040 --- 
240 47535120 --- 
300 2377800 2291448 
301 3360960 3269184 
302 2134080 2118720 
303 623280 615408 
310 14923440 14716272 
311 15716160 15699648 
312 6402240 6356160 
320 36383040 --- 
321 23686560 --- 
330 36383040 --- 
400 2500200 2437416 
401 2812320 --- 
402 1186740 1174836 
410 11843280 --- 
411 8436960 -- 
420 17764920 --- 
500 1687392 --- 
501 1282536 --- 
510 5062176 --- 
600 641268 --- 
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TABLE 3 

Listed below are the extrapolated coefficients aclczc,,.of Eq. (3.3). Values 
for both the fee and hcp lattices are &en. 

499 

Cl c, 

0 0 
1 0 
0 1 
0 0 
2 0 
0 2 
0 0 
1 1 
1 0 
0 1 
3 0 
0 3 
0 0 
2 1 
2 0 
1 2 
0 2 
1 0 
0 1 
1 1 

C3 

0 
0 
0 
1 
0 
0 
2 
0 
1 
1 
0 
0 
3 
0 
1 
0 
1 
2 
2 
1 

a(fcc) 
~_~~~.~ 

1.8325536 
5.3835 
3.1237 
1.0395 

-11.196 
-5.0010 
-0.70722 

-13.798 
-4.7363 
-3.4054 
34.501 
13.764 
0.84842 

67.838 
24.260 
51.098 
14.581 
7.4458 
5.8837 

36.243 

1.8340288 
5.3705 
3.0984 
1.0252 

- 11.099 
-4.7810 
-0.64973 

- 13.464 
-4.5767 
-3.1866 
33.827 
12.404 
0.69747 

64.653 
22.860 
47.203 
12.663 
6.5988 
4.9561 

32.613 

4. AN EXAMPLE CALCULATION 

Consider the pair potential [lo] 

@(Rij) = l (R*/Rij)l2 - 2c(R*/Rij)“. (4.1) 

Following Kihara and Koba [l 11, we shall determine the first-neighbor separation 
R,, by minimizing Uj,? at absolute zero, neglecting the zero-point vibrational energy. 
This yields 

&“/NC = C,‘/2C,, , 
P’/NR*3 = (C,,/2C,)1’2, 

k = 12 
1 Erl 

R@C4!3C-713 
6 12 9 

k, = (7C, - 32Cl,)/2s~, 

11 = C-G + G*Y% 

4 = C-G + ~GW’~, 

(4.2) 

where v = 14C, - 8C,, . 
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From the results of Section 3, we find, where d = hcp-fee, 

(kT)-lA(FJN) = 2.62 x 1O-3 + 4.57 x 10-5(0pcc/T)a 

+ 3.65 x 10-6(@&T)4 + 4.76 x 10-7(@f,,/T)6 -t . . . . (4.3) 

which converges for T > 0.865 0 fCC . It is interesting to note that AF, is essentially 
a classical result in the region of convergence. 

Since AV < 0, the hcp lattice is stable at higher pressures than is the fee lattice. 
For the two lattices to coexist at a fixed temperature and pressure, 

AG=O=AA+PAV. 

The transition pressure for T > 0.865 On,, is then given as 

(4.4) 

P = -80.2(~/R*~) + [243 + 4.24(&/T>“] kT/R*3. (4.5) 

Using the values E = 1.69 x 10-l* erg and R* = 3.828 for argon in the fee 
structure [6], we find 0 fee = 36.6” K. Equation (4.5) then predicts the fee lattice 
to be the stable form of argon for T > @f CC with a possibility of a phase transition 
to the hcp structure occurring at pressures of the order of lOlo dynes/cm2. 

The errors in the example calculation resulting from the choice of interaction 
potential and from the determination of the parameters at absolute zero rather 
than at the temperature in question are no doubt quite large. The main point of the 
example is to point out that AFK depends significantly on second-neighbor har- 
monic interactions. As such, any attempt to explain the stability of the two lattices 
should include the effects of second-neighbor harmonic interactions. The results 
of Section 3 should prove quite useful in this regard. 
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